Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8256, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589552

RESUMEN

Yellowfin tuna, Thunnus albacares, represents an important component of commercial and recreational fisheries in the Gulf of Mexico (GoM). We investigated the influence of environmental conditions on the spatiotemporal distribution of yellowfin tuna using fisheries' catch data spanning 2012-2019 within Mexican waters. We implemented hierarchical Bayesian regression models with spatial and temporal random effects and fixed effects of several environmental covariates to predict habitat suitability (HS) for the species. The best model included spatial and interannual anomalies of the absolute dynamic topography of the ocean surface (ADTSA and ADTIA, respectively), bottom depth, and a seasonal cyclical random effect. High catches occurred mainly towards anticyclonic features at bottom depths > 1000 m. The spatial extent of HS was higher in years with positive ADTIA, which implies more anticyclonic activity. The highest values of HS (> 0.7) generally occurred at positive ADTSA in oceanic waters of the central and northern GoM. However, high HS values (> 0.6) were observed in the southern GoM, in waters with cyclonic activity during summer. Our results highlight the importance of mesoscale features for the spatiotemporal distribution of yellowfin tunas and could help to develop dynamic fisheries management strategies in Mexico and the U.S. for this valuable resource.


Asunto(s)
Ecosistema , Atún , Animales , Golfo de México , Teorema de Bayes , Océanos y Mares
2.
Sci Data ; 9(1): 142, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365676

RESUMEN

Species occurrence records are vital data streams in marine conservation with a wide range of important applications. From 2001-2020, the Monterey Bay Aquarium led an international research collaboration to understand the life cycle, ecology, and behavior of white sharks (Carcharodon carcharias) in the southern California Current. The collaboration was devoted to tagging juveniles with animal-borne sensors, also known as biologging. Here we report the full data records from 59 pop-up archival (PAT) and 20 smart position and temperature transmitting (SPOT) tags that variously recorded pressure, temperature, and light-level data, and computed depth and geolocations for 63 individuals. Whether transmitted or from recovered devices, raw data files from successful deployments (n = 70) were auto-ingested from the manufacturer into the United States (US) Animal Telemetry Network's (ATN) Data Assembly Center (DAC). There they have attributed a full suite of metadata, visualized within their public-facing data portal, compiled for permanent archive under the DataONE Research Workspace member node, and are accessible for download from the ATN data portal.


Asunto(s)
Ecosistema , Tiburones , Animales , Bases de Datos Factuales , Telemetría
3.
PeerJ ; 9: e10834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777512

RESUMEN

BACKGROUND: The Gulf of Mexico (GOM) is a semi-enclosed sea where the waters of the United States, Mexico and Cuba converge. Al least 21 species of cetaceans inhabit it. The only mysticete (baleen whale) is found in the northeast (U.S. waters). The distribution of the 20 species of odontocetes (toothed cetaceans) is well understood in U.S. waters, but practically unknown in Mexican and Cuban waters. In this study we used sighting data from several odontocete species to construct habitat suitability maps in order to identify geographical regions suitable for high diversity throughout the GOM. METHODS: Historical datasets of georeferenced sightings from across the GOM were used to implement the maximum entropy algorithm (MaxEnt) to model the habitat suitability of each species. Five environmental predictors were used, selected for their influence over the occurrence of cetaceans: two oceanographic predictors (sea surface temperature and chlorophyll-a concentration), and three bathymetric predictors (depth, slope, and distance to 200-m isobath). A spatial approach based on the habitat suitability maps was used to identify the suitable regions. RESULTS: Only 12 species were modeled, which were the ones with the minimum sample size required. The models performed well, showing good discriminatory power and slight overfitting. Overall, depth, minimum sea surface temperature, and bottom slope were the most contributing predictor in the models. High suitability areas of 10 species were located on the continental slope, and four suitable regions were identified: (1) the Mississippi Canyon and the Louisiana-Texas slope in the northern GOM, (2) the west Florida slope in the east-northeastern GOM, (3) the Rio Grande slope in the west-northwestern GOM, and (4) the Tamaulipas-Veracruz slope in the west-southwestern GOM. CONCLUSIONS: We were able to detect four geographic regions in the GOM where a high diversity of odontocetes is expected, all located on the continental slope. Although the methodology to identify them (spatial overlap) is a very conservative approach, it is useful for conservation and management purposes. The paucity of data did not allow all species to be modeled, which highlights the importance of establishing transboundary monitoring programs.

4.
PLoS One ; 16(2): e0246082, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33626056

RESUMEN

Yellowfin tuna (YFT, Thunnus albacares) is a commercially important species targeted by fisheries in the Gulf of Mexico (GM). Previous studies suggest a high degree of residency in the northern GM, although part of the population performs movements to southern Mexican waters. Whether YFT caught in southern waters also exhibit residency or migrate to the northern gulf is currently uncertain, and little is known regarding their trophic ecology. The isotopic composition (bulk & amino acids) of YFT muscle and liver tissues were compared to a zooplankton-based synoptic isoscape from the entire GM to infer feeding areas and estimate Trophic Position (TP). The spatial distribution of δ15Nbulk and δ15NPhe values of zooplankton indicated two distinct isotopic baselines: one with higher values in the northern GM likely driven by denitrification over the continental shelf, and another in the central-southern gulf, where nitrogen fixation predominates. Based on the contribution of the two regional isotopic baselines to YFT tissues, broad feeding areas were inferred, with a greater contribution of the northern GM (over a one-year time scale by muscle), and to a lesser extent in the central-southern GM (over the ca. 6-month scale by liver). This was corroborated by similarities in δ15NPhe values between YFT and the northern GM. TP estimates were calculated based on stable isotope analysis of bulk (SIA) and compound-specific isotope analysis (CSIA-AA) of the canonical source and trophic amino acids. Mean TP based on SIA was 4.9 ± 1.0 and mean TP based on CSIA-A was 3.9 ± 0.2. YFT caught within the Mexican region seem to feed in northern and in central and southern GM, while feeding in the northern GM has a temporal component. Thus, management strategies need to consider that YFT caught in US and Mexican waters are a shared binational resource that exhibit feeding migrations within the GM.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Cadena Alimentaria , Atún , Animales , Teorema de Bayes , Golfo de México , Isótopos
5.
Adv Mar Biol ; 85(1): 39-69, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32456840

RESUMEN

Sharks have been of great cultural and socioeconomic importance in Mexico since the late 19th century, when the first fisheries were prosecuted in the Gulf of California to export fins to China. Mexican shark and ray fisheries are classified mainly by the size of the fishing vessel and include small- (7.5-10m), medium- (10-27m), and large-sized (>27m) fisheries. All are multispecies fisheries that use longline or gillnet gear, with their relative productivity varying over time. Off the Pacific coast, early shark small size vessel fisheries in the Gulf of California were driven by the need for vitamin A from livers, especially during World War II. As this fishery declined, new shark fishing opportunities arose because of government support and the development of the medium-sized fishery, which was capable of farther offshore excursions. Shark meat became an important part of the diets of poor and impoverished citizens during the 1950s and 1960s. The establishment of a Mexican Exclusive Economic Zone in 1976 pushed foreign vessels from Asia out of Mexican waters and led to the development of the large-sized vessel fishery to exploit pelagic sharks in offshore waters. By the early 1980s, Mexico shark fisheries were among the most productive in the world; however, a national economic crisis reduced effort and landings until the late 1980s, when several new fisheries emerged. Landings from Pacific states fluctuated between ~13,000 and 24,000t (dressed weight) during 1987-2012 but expanded steadily thereafter because of government support and offshore fleet expansion. Shark fisheries landings from the Mexican Pacific are currently at their highest recorded levels, exceeding 31,000t; however, a lack of species-specific landings and life history information has precluded population assessments of targeted stocks. In addition, though several recent management measures have been enacted to protect Mexican shark and ray fishery resources, the enforcement of these regulations is severely lacking. Therefore, the long-term sustainability of current fishing levels is unknown but should engender concern based on anecdotal evidence of serial depletion among historical elasmobranch targets in the Mexican Pacific.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Tiburones , Animales , México , Dinámica Poblacional
6.
Adv Mar Biol ; 85(1): 93-102, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32456842

RESUMEN

Mexico is a country that makes heavy use of the shark populations that inhabit the southern portion of the Northeast Pacific Ocean (NEP). Shark meat has become an essential food source in this country, while shark fins are used to supply traditional Asian markets. In addition to consumptive utilization, charismatic shark species support an ecotourism industry that has gained significance in several tourist resorts across the country. In this concluding chapter, we recap the contents of chapters included in volumes 83 and 85 in the Advances in Marine Biology series. The chapters in these volumes address biodiversity, conservation genetics, trophic ecology, migratory movements, fisheries, and shark ecotourism, allowing us to understand the state of knowledge relevant to human: shark interactions in the Mexican Pacific. We discuss the challenges for the sustainable use and conservation of sharks in the southern NEP and highlight the need for a more holistic management approach that includes economic and social factors. To meet these challenges, we recommend updating the Mexican National Plan of Action for Sharks published in, 2004, such that it may continue serving as a roadmap for the conservation and management of sharks in the southern NEP during the years to come.


Asunto(s)
Aletas de Animales , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Tiburones , Animales , Humanos , México , Océano Pacífico
7.
PLoS One ; 14(3): e0213741, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30861051

RESUMEN

Many species of sharks form aggregations around oceanic islands, yet their levels of residency and their site specificity around these islands may vary. In some cases, the waters around oceanic islands have been designated as marine protected areas, yet the conservation value for threatened shark species will depend greatly on how much time they spend within these protected waters. Eighty-four scalloped hammerhead sharks (Sphyrna lewini Griffith & Smith), were tagged with acoustic transmitters at Cocos Island between 2005-2013. The average residence index, expressed as a proportion of days present in our receiver array at the island over the entire monitoring period, was 0.52±0.31, implying that overall the sharks are strongly associated with the island. Residency was significantly greater at Alcyone, a shallow seamount located 3.6 km offshore from the main island, than at the other sites. Timing of presence at the receiver locations was mostly during daytime hours. Although only a single individual from Cocos was detected on a region-wide array, nine hammerheads tagged at Galapagos and Malpelo travelled to Cocos. The hammerheads tagged at Cocos were more resident than those visiting from elsewhere, suggesting that the Galapagos and Malpelo populations may use Cocos as a navigational waypoint or stopover during seasonal migrations to the coastal Central and South America. Our study demonstrates the importance of oceanic islands for this species, and shows that they may form a network of hotspots in the Eastern Tropical Pacific.


Asunto(s)
Movimiento/fisiología , Tiburones/fisiología , Animales , Conservación de los Recursos Naturales , Costa Rica , Islas , Estaciones del Año
8.
Proc Biol Sci ; 285(1890)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404878

RESUMEN

As upper-level predators, sharks are important for maintaining marine food web structure, but populations are threatened by fishery exploitation. Sustainable management of shark populations requires improved understanding of migration patterns and population demographics, which has traditionally been sought through physical and/or electronic tagging studies. The application of natural tags such as elemental variations in mineralized band pairs of elasmobranch vertebrae cartilage could also reveal endogenous and exogenous processes experienced by sharks throughout their life histories. Here, elemental profiles were characterized in vertebrae encompassing complete life histories (birth-to-death) of shortfin mako (Isurus oxyrinchus), common thresher (Alopias vulpinus) and blue shark (Prionace glauca) of known tag and recapture locations in the eastern North Pacific Ocean. All sharks were injected with oxytetracycline at initial capture, released and subsequently recaptured, with individual liberty times ranging from 215 days to 6 years. Vertebral band pairs forming over the liberty intervals were verified by counting the number of band pairs deposited since the oxytetracycline band. Regular oscillations in vertebrae manganese (Mn) content corresponded well with the number of validated band pairs, suggesting that Mn variation could be used to age sharks. Increases in vertebrae barium concentration were correlated with times when individuals occupied areas with high coastal upwelling indices, the timing and spatial intensity of which varied from year to year. Interspecific relationships were probably influenced by behavioural differences in horizontal and vertical habitat use, feeding habits and thermoregulatory physiology. These results indicate that vertebral sclerochronology has the potential to advance our knowledge of elasmobranch life history including age and growth estimation and environmental reconstruction.


Asunto(s)
Determinación de la Edad por el Esqueleto/veterinaria , Bario/metabolismo , Manganeso/metabolismo , Tiburones/fisiología , Columna Vertebral/química , Determinación de la Edad por el Esqueleto/métodos , Factores de Edad , Animales , Ecosistema , Océano Pacífico , Agua de Mar/química , Tiburones/crecimiento & desarrollo
9.
Sci Rep ; 6: 33745, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27658342

RESUMEN

Devil rays (Mobula spp.) face intensifying fishing pressure to meet the ongoing international demand for gill plates. The paucity of information on growth, mortality, and fishing effort for devil rays make quantifying population growth rates and extinction risk challenging. Furthermore, unlike manta rays (Manta spp.), devil rays have not been listed on CITES. Here, we use a published size-at-age dataset for the Spinetail Devil Ray (Mobula japanica), to estimate somatic growth rates, age at maturity, maximum age, and natural and fishing mortality. We then estimate a plausible distribution of the maximum intrinsic population growth rate (rmax) and compare it to 95 other chondrichthyans. We find evidence that larger devil ray species have low somatic growth rate, low annual reproductive output, and low maximum population growth rates, suggesting they have low productivity. Fishing rates of a small-scale artisanal Mexican fishery were comparable to our estimate of rmax, and therefore probably unsustainable. Devil ray rmax is very similar to that of manta rays, indicating devil rays can potentially be driven to local extinction at low levels of fishing mortality and that a similar degree of protection for both groups is warranted.

10.
J Hered ; 106(4): 347-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26034138

RESUMEN

White sharks (Carcharodon carcharias, WS henceforth) are globally and regionally threatened. Understanding their patterns of abundance and connectivity, as they relate to habitat use, is central for delineating conservation units and identifying priority areas for conservation. We analyzed mitochondrial data to test the congruence between patterns of genetic connectivity and of individual movements in the Northeastern Pacific (NEP) and to trace the matrilineal origin of immature WS from coastal California and Baja California to adult aggregation areas. We analyzed 186 mitochondrial control region sequences from sharks sampled in Central California (CC; n = 61), Southern California Bight (SCB; n = 25), Baja California Pacific coast (BCPC; n = 9), Bahía Vizcaíno (BV; n = 39), Guadalupe Island (GI; n = 45), and the Gulf of California (GC; n = 7). Significant mitochondrial differentiation between adult aggregation areas (CC, GI) revealed two reproductive populations in the NEP. We found general concordance between movement patterns of young and adult WS with genetic results. Young sharks from coastal California and Baja California were more likely born from females from GI. Mitochondrial differentiation of young-of-the-year from SCB and BV suggests philopatry to nursery areas in females from GI. These results provide a genetic basis of female reproductive behavior at a regional scale and point to a preponderance of sharks from GI in the use of the sampled coastal region as pupping habitat. These findings should be considered in Mexican and US management and conservation strategies of the WS NEP population.


Asunto(s)
ADN Mitocondrial/genética , Genética de Población , Tiburones/genética , Animales , California , Conservación de los Recursos Naturales , Femenino , Variación Genética , Haplotipos , Masculino , México , Océano Pacífico , Filogeografía , Reproducción , Análisis de Secuencia de ADN , Razón de Masculinidad
11.
J Hered ; 105(1): 91-100, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24123495

RESUMEN

The northern Mexican Pacific (NMP), the Gulf of California (GC), and Baja California have been recognized as an ecological and evolutionarily dynamic region having experienced significant tectonic and climatic changes leading to the diversification of terrestrial and marine biotas. Zapteryx exasperata is a predominant ray caught in the artisanal fisheries of the NMP. Morphometric and reproductive differences between rays from the GC and the Pacific coast of Baja California (PCBC) regions suggest the presence of distinct populations. We investigate whether this distinction correlates with differences in genetic diversity and differentiation using sequences of the mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 2 (ND2) gene and the noncoding control region (CR) in 63 specimens. Contrary to our expectations, ND2 bore significantly more diversity (h = 0.76) than CR (h = 0.39). Geographic patterns of diversity of CR were opposite to those of ND2, with GC being significantly less (ND2) and more (CR) diverse than PCBC. The diversity of concatenated haplotypes was high (h = 0.84). Low nucleotide diversity suggests the recent coancestry of haplotypes. Marked genetic structure (Φst = 0.23, P < 0.0001) revealed the existence of reproductive isolation and limited matrilineal gene flow between GC and PCBC, which correlates with their phenotypic distinction. These results suggest the influence of factors such as female reproductive philopatry, and ecological or historical vicariant barriers to gene flow. Our results point to the existence of a distinct management unit of banded guitarfish in each region, and add to the increasing evidence attesting to the diversifying nature of this evolutionarily dynamic region.


Asunto(s)
ADN Mitocondrial/aislamiento & purificación , Filogenia , Rajidae/clasificación , Rajidae/genética , Animales , ADN Mitocondrial/genética , Flujo Génico , Variación Genética , Haplotipos , México , Mitocondrias/genética , Filogeografía , Análisis de Secuencia de ADN
12.
Ecol Appl ; 17(8): 2268-80, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18213967

RESUMEN

Selective mortality, whether caused naturally by predation or through the influence of harvest practices, initiates changes within populations when individuals possessing certain heritable traits have increased fitness. Theory predicts that increased mortality rates will select for changes in a number of different life history characteristics. For example, fishing often targets larger individuals and has been shown repeatedly to alter population size structure and growth rates, and the timing of maturation. For sex-changing species, selective fishing practices can affect additional traits such as the mature population sex ratio and the timing of sexual transformation. Using historical comparisons, we examined the effects of exploitation on life history characteristics of California sheephead, Semicossyphus pulcher, a temperate protogynous (female-male sex changer) labrid that inhabits nearshore rocky environments from central California, USA, to southern Baja California, Mexico. Recreational fishing intensified and an unregulated commercial live-fish fishery developed rapidly in southern California between the historical and current studies. Collections of S. pulcher from three locations (Bahia Tortugas, Catalina Island, and San Nicolas Island) in 1998 were compared with data collected 20-30 years previously to ascertain fishery-induced changes in life history traits. At Bahia Tortugas, where fishing by the artisanal community remained light and annual survivorship stayed high, we observed no changes in size structure or shifts in the timing of maturation or the timing of sex change. In contrast, where recreational (Catalina) and commercial (San Nicolas) fishing intensified and annual survivorship correspondingly declined, males and females shifted significantly to smaller body sizes, females matured earlier and changed sex into males at both smaller sizes and younger ages and appeared to have a reduced maximum lifespan. Mature sex ratios (female:male) increased at San Nicolas, despite a twofold reduction in the mean time spent as a mature female. Proper fisheries management requires measures to prevent sex ratio skew, sperm limitation, and reproductive failure because populations of sequential hermaphrodites are more sensitive to size-selective harvest than separate-sex species. This is especially true for S. pulcher, where different segments of the fishery (commercial vs. recreational) selectively target distinct sizes and therefore sexes in different locations.


Asunto(s)
Explotaciones Pesqueras , Peces/fisiología , Animales , Tamaño Corporal , California , Conservación de los Recursos Naturales , Femenino , Masculino , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...